NATIONAL INSTITUTE FOR COMPUTATIONAL SCIENCES

NICS,

/O and Lustre:

b An Application Programmer’s
Perspective

Bilel Hadri and Lonnie Crosby
bhadri@utk.edu Icrosby1@utk.edu

NICS Scientific Computing Group

OLCF/NICS Spring Training
March 9th, 2011

NATIONAL INSTITUTE FOR COMPEITATIONAL SCIENCES

Outline

e Introduction to I/0

e Path from Application to File System

e Common I/O Considerations

¢ |/O Best Practices

NICS,

Outline

e Introduction to I/0

NICS,

Factors which affect I/O.

e l/O is simply data migration.
— Memory «—> Disk

e l/O is a very expensive operation.

— Interactions with data in memory and on disk.

e How is I/O performed?

— 1/0 Pattern

e Number of processes and files.
e Characteristics of file access.

e Where is 1/0 performed?

— Characteristics of the computational system.
— Characteristics of the file system.

NICS)

/O Performance

e There is no “One Size Fits All” solution to
the 1/0 problem.

e Many I/O patterns work well for some range
of parameters.

e Bottlenecks in performance can occur in
many locations. (Application and/or File
system)

e Going to extremes with an 1/O pattern will
typically lead to problems.

NICS,

Outline

e Path from Application to File System
— Data and Performance
— 1/O Patterns
— Lustre File System
— /0 Performance Results

NICS,

Data and Performance

e The best performance comes from situations when the
data is accessed contiguously in memory and on disk.

Memory Disk

NN — [

e Commonly, data access is contiguous in memory but
noncontiguous on disk. For example, to reconstruct a
global data structure via parallel I/O.

Memory Disk

NN e B H B

NICS)

Data and Performance

e Sometimes, data access may be contiguous on disk but
noncontiguous in memory. For example, writing out the
interior of a domain without ghost cells.

Memory Disk

H NN — I

e A large impact on I/O performance would be observed if
data access was noncontiguous both in memory and on
disk.

Memory Disk

HE N — HEEN

NICS,

Serial I1/0: Spokesperson

e Spokesperson
— One process performs /0.

e Data Aggregation or
Duplication

e Limited by single 1/0
process.

— Pattern does not scale.

e Time increases linearly
with amount of data.

¢ Time increases with
number of processes.

Disk

NICS)

Parallel I/O: File-per-Process

e File per process

— All processes perform |/O
to individual files.
e Limited by file system.
Y
N

— Pattern does not scale at
large process counts.

e Number of files creates
bottleneck with metadata
operations.

e Number of simultaneous
disk accesses creates
contention for file
system resources.

8348

i NICS)

Parallel I/0: Shared File

e Shared File

— Each process performs 1/0
to a single file which is
shared.

— Performance

e Data layout within the
shared file is very
important.

o At large process counts
contention can build for
file system resources.

11

Pattern Combinations

e Subset of processes which perform I/O.

— Aggregation of a group of processes data.
e Serializes 1/0 in group.

— 1/0 process may access independent files.
e Limits the number of files accessed.

— Group of processes perform parallel I/0 to a shared file.
e Increases the number of shared files
—> increase file system usage.
e Decreases number of processes which access a shared file
- decrease file system contention.

b Sk Sk i

NICS

File I/O: Lustre File System

Metadata Server (MDS) makes metadata stored in the
MDT(Metadata Target) available to Lustre clients.

Each MDS manages the names and directories in the
Lustre filesystem and provides network request handling
for the MDT.

Object Storage Server(OSS) provides file service, and
network request handling for one or more local OSTs.

Object Storage Target (OST) stores file data (chunks of
files).

-

©2009 Cray Inc.

Application

Processes
running on
compute
nodes

Memory Memory Memory Memory

I #

High speed | |
network

o 1 ¢

processes
running on MDS 08S0 P 0SSm
service
nodes

110 channels

Y Y Y Y

Y

> > > O >

RAID MDT OST || OST OST || OST
Davices

NICS

Striping: Storing a single file across multiple OSTs

e A single file may be stripped across one or more OSTs (chunks of the file
will exist on more than one OST).

e Advantages :
- an increase in the bandwidth available when accessing the file
- an increase in the available disk space for storing the file.

¢ Disadvantage:
- Increased overhead due to network operations and server contention

—> Lustre file system allows users to specify the striping policy for each
file or directory of files using the Ifs utility

NICS,

File Striping: Physical and Logical Views
P1 P2 P3
Four application processes write a variable
“: :H H amount of data sequentially within a shared file.
This shared file is striped over 4 OSTs with 1 MB
I I stripe sizes.

Ip/ 1/ 1/1/ PO P1 P2 P3
1 — | EEEn :H H

PO

Offset OMIB 1MB 2MB 3MB 4MB 5MB

This write operation is not stripe aligned therefore < >
some processes write their data to stripes used by
other processes. Some stripes are accessed by
more than one process

OSTO OST1 OST2 OST3

i |
9 May cause Contentl on: OSTs are accessed by variable numbers of processes (3 OSTO0, 1 OST1, 2 OST2 and 2 OST3).

15 ©2009 Cray Inc. NICS,

Single writer performance and Lustre
e 32 MB per OST (32 MB - 5 GB) and 32 MB Transfer Size

— Unable to take advantage of file system parallelism

— Access to multiple disks adds overhead which hurts performance

Single Writer
Write Performance

120

100

80
ml1 MBS
60
m 32 MB Stripe
i)
0 — T T T T T T T
1 2 4 16 32 64 128 160

Stripe Count

Write (MB/s)

- Using more OSTs does not increase write performance. (Parallelism in Lustre cannot be exploit)

16 NICS,

Stripe size and I/O Operation size
e Single OST, 256 MB File Size

— Performance can be limited by the process (transfer size) or file system

(stripe size). Either can become a limiting factor in write performance.

Single Writer
Transfer vs. Stripe Size

140
120
100
©
m 80
2 m 32 MB Transfer
]
"EE m 8 MB Transfer -
m 1 MB Transfer M

1 2 4 8 16 32 64 128
Stripe Size (MB)

- The best performance is obtained in each case when the I/O operation and stripe sizes are similar.
- Larger I/O operations and matching Lustre stripe setting may improve performance (reduces the latency of I/O op.)

- NICS

Single Shared Files and Lustre Stripes

Shared File Layout #1
D

32 MB
Proc. 1

32 MB
Proc. 2

32 MB
Proc. 3

32 MB
Proc. 4

32 MB
Proc. 32

Layout #1 keeps data from a process in a contiguous block

18 NICS,

Single Shared Files and Lustre Stripes

Shared File Layout #2

Repetition #1

Repetition #2 - #31

Repetition #32

il

/\

Layout #2 strides this data throughout the file

19

1 MB
Proc.1

1 MB
Proc. 2

1 MB
Proc. 3

1 MB
Proc. 4

1 MB
Proc. 32

1 MB
Proc.1

1 MB
Proc. 2

1 MB
Proc. 3

1 MB
Proc. 4

1 MB
Proc. 32

NICS

20

File Layout and Lustre Stripe Pattern

Single Shared File (32 Processes)
1 GB file

m 1 MB Stripe (Layout #2)

m 1 MB Stripe (Layout #1) = \
m 32 MB Stripe (Layout #1)

32
Stripe Count

- A 1 MB stripe size on Layout #1 results in the lowest performance due to OST contention. Each OST is

accessed by every process.

- The highest performance is seen from a 32 MB stripe size on Layout #1. Each OST is accessed by only

one process.

- A1 MB stripe size gives better performance with Layout #2. Each OST is accessed by only one process.

However, the overall performance is lower due to the increased latency in the write (smaller 1/O
operations).

NICS,

21

Scalability: File Per Process

o 128 MB per file and a 32 MB Transfer size

File Per Process

Write Performance
12000

10000 / N\
' -

\ .

N\

\ —4—1 MB Stripe

=i—32 MB Stripe

Write (MB/s)
2 8
8 8

4000 -

2000 -

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Processes or Files

-> Performance increases as the number of processes/files increases until OST and metadata
contention hinder performance improvements.

- At large process counts (large number of files) metadata operations may hinder overall
performance due to OSS and OST contention.

NICS

Case Study: Parallel I/O

e A particular code both reads and writes a 377 GB file.
Runs on 6000 cores.
— Total I/O volume (reads and writes) is 850 GB.
— Utilizes parallel HDF5

o Default Stripe settings: count 4, size 1M, index -1.
— 1800 s run time (~ 30 minutes)

o Stripe settings: count -1, size 1M, index -1.
— 625 s run time (~ 10 minutes)

e Results =

— 66% decrease in run time.

NICS,

Scalability

* Serial /0
—Is not scalable. Limited by single process which performs I/O.

* File per Process
— Limited at large process/file counts by:
 Metadata Operations
* File System Contention

* Single Shared File
— Limited at large process counts by file system contention.
— File striping limitation of 160 OSTs in Lustre (on Kraken)

NICS,

Outline

e Common I/O Considerations
— 1/0 libraries
— MPI I/O usage
— Buffered I/O

NICS,

/O Libraries (MPI-I0)

e Many /O libraries such as HDF5 and Parallel NetCDF
are built atop MPI-IO.

e Such libraries are abstractions from MPI-IO.

e Such implementations allow for higher information
propagation to MPI-IO (without user intervention).

NICS,

MPI-I0 Usage

* Included in the Cray MPT library.

 Environmental variable used to help MPI-IO optimize I/O

performance.
— setenv MPICH_MPIIO_HINTS
— man mpi for more information

* If given appropriate information (stripe count, size) can
choose aggregators in collective operations that are Lustre
stripe aligned. (collective buffering).

NICS,

MPI-IO_HINTS

e MPI-1O are generally implementation specific. Below are
options from the Cray XT5. (partial)
— striping_factor (Lustre stripe count)
— striping_unit (Lustre stripe size)
— cb_buffer_size (Size of Collective buffering buffer)
— cb_nodes (Number of aggregators for Collective buffering)
— ind_rd_buffer_size (Size of Read buffer for Data sieving)
— ind_wr_buffer_size (Size of Write buffer for Data sieving)

e MPI-IO Hints can be given to improve performance by
supplying more information to the library. This information
can provide the link between application and file system.

NICS,

Buffered I/O

e Advantages
— Aggregates smaller read/write

operations into larger operations.

— Examples: OS Kernel Buffer,
MPI-IO Collective Buffering

e Disadvantages

— Requires additional memory for
the buffer.

— Can tend to serialize 1/0.

e Caution

— Frequent buffer flushes can
adversely affect performance.

Disk

Disk

NICS,

Case Study: Buffered I/O

e A post processing application writes a 1GB file.

e This occurs from one writer, but occurs in many small write operations.
— Takes 1080 s (~ 18 minutes) to complete.

e |O buffers were utilized to intercept these writes
with 4 64 MB buffers.

— Takes 4.5 s to complete. A 99.6% reduction in time.

File "ssef cn 2008052600£000"

Calls Seconds Megabytes Megabytes/sec Avg Size
Open 1 0.001119
Read 217 0.247026 0.105957 0.428931 512
Write 2083634 1.453222 1017.398927 700.098632 512
Close 1 0.220755
Total 2083853 1.922122 1017.504884 529.365466 512
Sys Read 6 0.655251 384.000000 586.035160 67108864
Sys Write 17 3.848807 1081.145508 280.904052 66686072
Buffers used 4 (256 MB)
Prefetches 6
Preflushes 15

NICS,

Outline

¢ |/O Best Practices

NICS,

|/O Best Practices

e Read small, shared files from a single task

— Instead of reading a small file from every task, it is advisable to read the entire file from one
task and broadcast the contents to all other tasks.

o Small files (<1 MB to 1 GB) accessed by a single process
— Set to a stripe count of 1.

e Medium sized files (> 1 GB) accessed by a single process
— Set to utilize a stripe count of no more than 4.

e Large files (>> 1 GB)
— set to a stripe count that would allow the file to be written to the Lustre file system.

— The stripe count should be adjusted to a value larger than 4.
— Such files should never be accessed by a serial /O or file-per-process /O pattern.

NICS,

/0 Best Practices (2)

e Limit the number of files within a single directory

— Incorporate additional directory structure
— Set the Lustre stripe count of such directories which contain many small files to 1.

e Place small files on single OSTs

— If only one process will read/write the file and the amount of data in the file is small (<1 MB to
1 GB) , performance will be improved by limiting the file to a single OST on creation.

—> This can be done as shown below by: # Ifs setstripe PathName -s 1m -i -1 -c 1

e Place directories containing many small files on single OSTs

— If you are going to create many small files in a single directory, greater efficiency will be
achieved if you have the directory default to 1 OST on creation

># Ifs setstripe DirPathName -s 1m -i -1 -c 1

NICS,

/O Best Practices (3)

e Avoid opening and closing files frequently
— Excessive overhead is created.

o Use Is -l only where absolutely necessary

— Consider that “Is -I” must communicate with every OST that is assigned to a file being listed
and this is done for every file listed; and so, is a very expensive operation. It also causes
excessive overhead for other users. "Is" or "Ifs find" are more efficient solutions.

e Consider available I/O middleware libraries

— For large scale applications that are going to share large amounts of data, one way to improve
performance is to use a middleware libary; such as ADIOS, HDF5, or MPI-I0.

— On Kraken and Jaguar, I/O libraries are the third most used libraries at linking

NICS,

34

Further Information
e NICS website

— http:/lwww.nics.tennessee.edu/l-O-Best-Practices

e Lustre Operations Manual
— http:/ldic.sun.com/pdf/821-0035-11/821-0035-11.pdf

e The NetCDF Tutorial

— http://Iwww.unidata.ucar.edu/software/netcdf/docs/netcdf-

tutorial.pdf

e Introduction to HDF5
— http:/l ww.hdfgroup.orq/HDF5/doc/H5.intro.html

http://www.nics.tennessee.edu/I-O-Best-Practices
http://www.nics.tennessee.edu/I-O-Best-Practices
http://www.nics.tennessee.edu/I-O-Best-Practices
http://www.nics.tennessee.edu/I-O-Best-Practices
http://www.nics.tennessee.edu/I-O-Best-Practices
http://www.nics.tennessee.edu/I-O-Best-Practices
http://www.nics.tennessee.edu/I-O-Best-Practices
http://www.nics.tennessee.edu/I-O-Best-Practices
http://dlc.sun.com/pdf/821-0035-11/821-0035-11.pdf
http://dlc.sun.com/pdf/821-0035-11/821-0035-11.pdf
http://dlc.sun.com/pdf/821-0035-11/821-0035-11.pdf
http://dlc.sun.com/pdf/821-0035-11/821-0035-11.pdf
http://dlc.sun.com/pdf/821-0035-11/821-0035-11.pdf
http://dlc.sun.com/pdf/821-0035-11/821-0035-11.pdf
http://dlc.sun.com/pdf/821-0035-11/821-0035-11.pdf
http://dlc.sun.com/pdf/821-0035-11/821-0035-11.pdf
http://dlc.sun.com/pdf/821-0035-11/821-0035-11.pdf
http://www.unidata.ucar.edu/software/netcdf/docs/netcdf-tutorial.pdf
http://www.unidata.ucar.edu/software/netcdf/docs/netcdf-tutorial.pdf
http://www.unidata.ucar.edu/software/netcdf/docs/netcdf-tutorial.pdf
http://www.hdfgroup.org/HDF5/doc/H5.intro.html

Further Information MPI-IO

— Rajeev Thakur, William Gropp, and Ewing Lusk, "A Case for Using
MPI's Derived Datatypes to Improve |/O Performance," in Proc. of
SCI8: High Performance Networking and Computing, November
1998.

¢ http://www.mcs.anl.gov/~thakur/dtype

— Rajeev Thakur, William Gropp, and Ewing Lusk, "Data Sieving and
Collective 1/O in ROMIO," in Proc. of the 7th Symposium on the
Frontiers of Massively Parallel Computation, February 1999, pp.
182-189.

¢ http://www.mcs.anl.gov/~thakur/papers/romio-coll.pdf

— Getting Started on MPI 1/O, Cray Doc S-2490-40, December
20009.

e http://docs.cray.com/books/S-2490-40/S-2490-40.pdf

. NICS,

http://www.mcs.anl.gov/~thakur/dtype
http://www.mcs.anl.gov/~thakur/papers/romio-coll.pdf
http://www.mcs.anl.gov/~thakur/papers/romio-coll.pdf
http://www.mcs.anl.gov/~thakur/papers/romio-coll.pdf
http://docs.cray.com/books/S-2490-40/S-2490-40.pdf
http://docs.cray.com/books/S-2490-40/S-2490-40.pdf
http://docs.cray.com/books/S-2490-40/S-2490-40.pdf
http://docs.cray.com/books/S-2490-40/S-2490-40.pdf
http://docs.cray.com/books/S-2490-40/S-2490-40.pdf
http://docs.cray.com/books/S-2490-40/S-2490-40.pdf
http://docs.cray.com/books/S-2490-40/S-2490-40.pdf
http://docs.cray.com/books/S-2490-40/S-2490-40.pdf
http://docs.cray.com/books/S-2490-40/S-2490-40.pdf

Thank You !

